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ABSTRACT: Compared to bulk perovskites, charge transport in
perovskite quantum dot (PQD) solids is limited. To address this issue,
energetically aligned capping ligands were used to prepare methyf®
ammonium lead bromide (MAPbBrPQDs toward enhancing surface
charge carrier density in PQD solids. Trans-cinnamic acid (TCA) a@d
its derivates, functionalized with electron-donating or electron- o
withdrawing groups to modulate energy levels, are used as passivating
exciton-delocalizing ligands (EDLS) to decrease the energy gap with
respect to the PQD core. 3,3-Diphenylpropylamine (DPPA) ligand is shown to stabilize EDLs on the PQD surface th

stacking intermolecular interaction, mitigating charge trapping and nonradiative decay. Passivation using E
combination with DPPA increases the photoluminescence (PL) quantum yield (QY) (90%), photoconductivity, extra
mobility, transport time, and lifetime of charge carriers in PQD solids. Prototype PQD-based light-emitting diodes (L
were demonstrated with a low turn-on voltage of 2.5 V.

erovskites (OMHP) with the formula AB = Ims need to be thick enough for sient light absorption
ethylammonium (MA, B = PB*, X =CI, Br, 1) and, at the same time, maintaiective charge transport.

show great promise for optoelectronic applications because of o improve charge transport, one approach is to incorp
their size-tunable bandgap, facile solution-based synthesis @mrjugated capping ligands to enable delocalization of ¢
potential low-cost fabricatiorl. Compared to other semi- carriers from the QD to its ligands. This allows greater a
conductors, OMHPs show a high tolerance for defects arad charge carriers at interfacial regions. In a previous re
long exciton lifetimes, which enable fabrication of highlysing hole accepting aromatic ligands for CdSe QDs res
e cient device$. *’ in a 10-fold improvement in short circuit current derigity (

For device applications, such as photovoltaic (PV) or lightompared to passivating wiitng-chain hydrocarbon
emitting diode (LED), electronic inter-PQD coupling is criticaligands?’ This method was extended to the hole-delocaliz
for e ective charge transport through PQD solid. ligand phenyldithiocarbamate (PTC) for CdSe ©BS.
However, this has been a major limiting factor since mo§onjugating PTC to CdSe QDs causes a bathochromic sh
ligands used to stabilize PQDs are insuftligch ligands  the absorption spectrum, which sgman extension in charg
present a large potential barrier for charge transfer betweearrier delocalization volume and follows the quant
PQDs in solid Im° ?° For example, CsRbPQDs  con nement eect. This QD-ligand coupling is attributed t
synthesized with insulating oleylamine and oleic acid cappina
ligands were fabricated into solar cells with optimal PQD  Rreceived: January 14, 2020
thickness near 200 rAfiFilms with greater thickness resulted Accepted: February 12, 2020
in a decrease of performance mainly due to the lack @{iblished: February 12, 2020
photocurrent and charge transport. The state-of-the-art
perovskite solar cells based on blitk have optimallm

Smiconductor QDs based on organo-metal halid¢hicknesses between 400 and 808°rif Therefore, PQD
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energetic alignment between the highest occupied moleculable 1. Absolute PLQY of MAPbB®Ds and Molecular
orbitals (HOMO) of PTC and the highest density-of-states irStructure of (a) TCA, (b) TFCA, (c) PFCA, (d) MOCA, (e)
the valence band-edge of CdSe QDs. In other studies, th@, (f) BTYA, and (g) DPPA

e ect of PbS QD surface magdition on exciton delocaliza-

tion was investigated using trans-cinnamic acid (TCA) MAPDLBr; PQD  PLQY(%)

derivatives as capping ligafid€. Functionalizing the TCA BTYA-VA 18

molecule with electron-witlaeving or electron-donating BTYA-TCA 5

groups profoundly acts the band-edge positions, bandgap,

and optical absorption enhancement of PbS QDs. Further- BTYA-TFCA 30

more, energetic alignment between the orbitals of exciton- BTYA-PFCA 18

delocalihzing ligands (EDII__s) an?}_tf;}e_band—edges othDI_s cag BTYA-MOCA 72

a ect charge carrier cooling, which is sensitive to the ligan _

binding conguratior.” Therefore, in addition to energetic DPPA-VA 36

alignment, sped EDL binding on the QD surface can DPPA-TCA 90

signi cantly aect QD QD electronic coupling and, thereby, DPPA-TFCA 46

charge transport in QD solids. DPPA-PFCA 46
Using EDLs to increase QQD electronic coupling has _

also been reported for MAPHPBIQDs. An LED device DPPA-MOCA 58

fabricated using MAPRBPQDs passivated with EDLs a) b) c) d) /

resulted in 22-fold higher conductivity and carrier mobility CFs F 0o

than MAPbByPQDs with long alkyl-chain capping ligahds. F F

Additionally, in our previous work, MARBBPDs passivated

with EDLs were observed to have higher conductivity and N F F

charge mobility along with longer excitonic recombination N N N

lifetime and faster charge transport timdowever, to HO™ O

achieve greater QD electronic coupling for PQD solids, it HO™ "0l HO" OlHo™™o

is critical to energetically align the related molecular orbitals of e) f) 9)

the ligands with the band-edges of the PQD core. ‘ O
In this work, MAPbBPQDs were synthesized by surface

passivating with valeric acid (VA), TGrans4-(tri uor-

omethyl) cinnamic acid (TFCA)ans2,3,4,5,6-pentaor- HO™ ~O NH, NH,

ocinnamic acid (PFCA), arithns4-methoxycinnamic acid
(MOCA) to vary their energy levels with respect to the band
edges of the PQD core, as well as butylamine (BTYA) and 3 &bsorption peak between 510 and 525 nm and PL peak
diphenylpropylamine (DPPA), to stabilize the conjugate@etween 515 and 530 nm to accurately compare optical and
carboxylate ions or alter their binding geometry on the PQRlectronic properties amongedent PQD samples.
surface. Optical and photoelectrochemical, as well as timeTo determine the size and shape, high-resolution trans-
resolved optical and electrical measurements, haweetbn mission electron microscopy (HRTEM) was performed, as
that conjugated ligands with HOMO or lowest unoccupiedhown irFigure & and d. The average diameter for the PQDs
molecular orbital (LUMO) closest to the band-edges of thgynthesized with BTYA and VA, TCA, TFCA, PFCA, or
MAPbBg PQDs increases charge delocalization on the PQRIOCA is 6.1+ 1.5 nm, while PQDs synthesized with DPPA
surface when passivated in combination with DPPAsSDPPAnd each respective acid is slightly larger at 6.8 nm.
stacking intermolecular interaction in conjunction withShown in the inset éfigure t and d are images of lattice
TCA, TFCA, or MOCA, generates PQD solichs with spacing, which is measured to be 0.29 nm for each MAPbBr
enhanced optical and electronic properties, as well as produP€D sample, corresponding to the (002) crystal face of cubic
bright electroluminescent LED devices with low turn-orCH;NH PbBg.*®
voltages. To conrm the presence of each capping ligand, Fourier
MAPbBg PQDs were synthesized by following a previouslyransform-infrared (FT-IR) spectroscopy was conducted for
reported procedufé.Precursor solution consisting of RbBr each PQD sample, as showifFigure S2Monosubstituted
MABr, DPPA, or BTYA and VA, TCA, TFCA, PFCA, or aromatic CH in the regions 770730 and 720680 cm? is
MOCA is dissolved iN,N-dimethylformamide (DMF) and observed for each MAPHBQD, indicating the presence of
rapidly injected into a vigorously stirred toluene antisolvent. RCA, TFCA, PFCA, or MOCA from each respective MAPbBr
detailed description of the synthesis is inStheporting PQD.
Information (SI) Absolute PLQY data were obtained using an The extent of charge carrier delocalization from passivating
integrating sphere, a diagram of the measurement is displayéth conjugated capping ligands was determined from a ligand
in Figure S1Absolute PLQY for each MAPPBRD sample  exchange using MAPbBragic-sized clusters (MSCs) capped
is shown inTable 1 DPPA-TCA MAPbBrPQDs are  with BTYA and oleic acid (OA), as well as DPPA and OA.
observed to have the highest absolute PLQY at 90%. AmoBfYA-OA and DPPA-OA MAPRBIUSCs were synthesized
the PQDs synthesized with BTYA, BTYA-MOCA MAPDbBr following a previously reported procetfuietail of the
PQDs were observed to have the highest PLQY at 72%. Thgnthesis is isl. MSCs were chosen for ligand exchange
UV vis absorption and photoluminescence (PL) spectra dfecause they are in a very strongm@nent regime and more
each MAPbBPQD sample is displayedFigure & and b. strongly comed charge carriers will have a greater sensitivity
Each MAPbBrPQD sample was tuned to have an excitorto increases to extra delocalization volume. The sizes of BTYA-
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Figure 1. UV vis absorption (solid line) and PL spectra (dotted line) of (A) BTYA-VA (a, red), -TCA (b, blue), -TFCA (c, green), -PFCA

(d, orange), and -MOCA (e, magenta) and (B) DPPA-VA (a, red), -TCA (b, blue), -TFCA (c, green), -PFCA (d, orange), and -MOCA (e,
magenta) MAPbBrPQDs suspended in toluene. (C) HRTEM image of MARBBPDs passivated with DPPA-TCA (scale bar 10 nm). The

lower left inset is image of lattice spacing (scale bar 2 nm). (D) HRTEM image of BTYA-TCA MAP®BIs (scale bar 10 nm), and the

lower left inset is lattice spacing image (scale bar 2 nm). HRTEM images are similar with respect to BTYA or DPPA amine with each acid.

OA and DPPA-OA MSCs were estimated using the Bru® the PQD lattice or orient TCA to have more geometric
equation developed for Qfi8ecause of their molecular-like orbital overlap.

structures, TEM images of the MSCs could not be Furthermore, the PLQY before and after ligand exchange
obtained®** These calculated values are used as estimaté@s measured. Before ligand exchange the PLQY of BTYA-OA
and may not rect the true size. Detail of the calculation andand DPPA-OA MSC solution was calculated to ke 4%

ligand exchange procedure iSinBefore ligand exchange and 12+ 3% (vs quinine sulfate, 58%), respectively. After
with TCA, the BTYA-OA and DPPA-OA MSC sizes werdigand exchange, the PLQY of BTYA-TCA and DPPA-TCA
calculated to be 2.89 and 2.65 nm, respectively. Aft&fSC solution was H 3% and 3& 5%, respectively. This
exchanging OA ligands with TCA ligands, a 4 nm redshift ﬁa,nhancemen.t in PLQY has beer] previously obse_rved in CdSe
exciton absorption peak and 4 nm red-shift in PL peak w&&DS upon ligand exchange with an EDL, which can be
observed for the BTYA-TCA MSC solution, equivalent of a'a}t'[rlbu'[_e'd to stabilization of th('E.EXCItonIC state and increased
increase in size to 2.99 nm, as showhigare 2. The probability of band-edge transltﬁfhs: . .
delocalization radius wastimated by subtracting the To determine the extent of ligand interaction with the PQD

: . core, FT-IR spectroscopy was performed before and after
calculated MSC size before and after ligand exchénge. | and exchange. As showiFipure 2, the most noticeable

) . . 4 li
the basis of the bandgap shift, this corresponds to an incre - 3 )
in delocalization radius of 0.05 nm. For the DPPA-OA MS%%Eﬂgez;ghtgﬁgsrVlvﬁihSp-?ég\a ifsort':]hee Eggélgﬁcgﬂsoﬁssﬁ)?%

solution, exchanging OA ligands for TCA ligands resulted ingdynosubstituted aromatic B at 773 and 688 crh In

27 nm redshift of the absorption peak and 49 nm redshift in Péddition, a strong peak at 733 tand shoulder peak at 716
peak, as displayedriyure B. This translates to a calculated ¢m 1 gppear in the FT-IR spectrum after ligand exchange,
size of 3.30 nm. Therefore, the increase in delocalization rad&v‘ﬁch may also be indicative ofedent bound states of the

for DPPA-TCA MSC solution is calculated to be 0.33 nm. TheCA ligand on the PQD latti¢e.** For the DPPA-OA MSC

larger increase in delocalization radius upon ligand exchamgand exchange with TCA, due to the aromatic DPPA
for the DPPA-OA MSC solution could be due to stabilizationnolecule, multiple aromatic B is observed before ligand

of the TCA ligands on the PQD surface from thestacking exchange at 770, 750, 737, and 702, @s shown iffigure
interactions between the aromatic rings in the DPPA and TC2d. After ligand exchange, peaks in this region become stronger
molecules. This could enable more TCA molecules to adsoirb intensity, sharper, and slightly shifted. Peaks after ligand
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Figure 2. UV vis absorption spectra of (A) BTYA-OA and (B) DPPA-OA MSCs before and after ligand exchange with TCA. FT-IR spectra
of (C) BTYA-OA and (D) DPPA-OA MSCs before and after ligand exchange with TCA in the C-H aromatic region, and (E) BTYA-OA and
(F) DPPA-OA MSCs before and after ligand exchange with TCA in thé&Gtretching region.

exchange in the monosubstituted aromatit ©gion are at  with the HOMO and LUMO energy levels of each conjugated
771, 749, 733, and 700 ¢nas well as the appearance of a 686acid, based on calculations using density functional theory
cm ! shoulder peak. ShownFimure 2 and f is the CO (DFT/B3LYP), as well as values from previous repoifs,
stretching before and after ligand exchange. Before ligah@A's HOMO and LUMO orbitals are both near the VB and
exchange for BTYA-OA and DPPA-OA MSCs, there is we&@B edges of the PQD core, while TFCA has LUMO more
and broad C O stretching at 1630 and 1626 &m aligned to the CB edge and MOCA has its HOMO more
respectively, corresponding to OA. After ligand exchangdigned to the VB edge. The relevant energy levels are
these peaks disappear, and there is an appearance of a stsomgmarized iRigure S3Therefore, TCA, TFCA, and MOCA
and sharp at peak 1635 &ifor both MSC solutions, which is are more likely to facilitate delocalization of photogenerated
assigned to the CO stretching of TCA. Therefore, it may be charge carriers in the PQD core than VA and PFCA. However,
concluded that TCA ligands sigantly or completely the strong interaction between the orbitals of EDLs and PQD
replaced OA ligands. core may facilitate trapping of charge carriers if the EDL is
The photogenerated charge carrier dynamics of eadtound in a particular binding geométr@n the surface of
MAPbBg PQD sample was investigated in sdfics using  the PQD core, the intermolecular interaction of adjacent
time-correlated single-photon counting (TCSPC). Details d8TYA and EDL ligands is relatively weaker than the
the measurements are describ&l i@omparing the valence stacking intermolecular interaction between adjacent DPPA
band (VB) and conduction band (CB) edges of the PQD corand EDL ligands. Because of the stronger stacking
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intermolecular interactions between adjacent DPPA and EDLUsing the absolute PLQY and the average PL lifetime, the
ligands, vibration and rotation of the EDLs may be moreadiative and nonradiative lifetimes were calculated. Detail of
restrained than with BTYA. Therefore, charge carrietthe calculation is included 8. As shown inTable S1
delocalizing into EDLs may have less nonradiative recombbupling DPPA ligand with TCA or MOCA ligands enhances
nation in the company of DPPA than BTYA. As shown irts radiative rate of decay with respect to its nonradiative rate.
Figure & and b, this may contribute to the shorter or similatwhile for BTYA ligand, when coupled with EDLSs, the radiative
decay is comparable or sigantly slower than its non-
radiative decay. The increase in radiative decay rate and PLQY
in DPPA passivated PQDs could be attributed tésEDIlity

to stabilize photoexcited charge carriers generated in the PQD
core by forming newly available interfacial states that could
enhance the probability of band-edge transitiékbereas,

for BTYA passivated PQDs, these interfacial states may trap
charge carriers and increase nonradiative recombination.

To investigate the ect of EDLs on the conductivity and
charge transport properties of PQIs, electrochemical
impedance spectroscopy (EIS) was conducted. Details of the
EIS measurements are suppliedll.ifrigure 4 and b shows

Figure 3. Time-resolved PL spectra of (A) BTYA-VA (e, red),
-TCA (a, blue), -TFCA (d, green), -PFCA (c, orange), and -MOCA
(b, magenta) and (B) DPPA-VA (e, red), -TCA (b, blue), -TFCA
(d, green), -PFCA (c, orange), and -MOCA (a, magenta)
MAPDBBr3 PQD Im on borosilicate glass substrate. Inset displays
» 2 A, Ay, and L. representing the fast and slow decay
component lifetime and amplitude, and average PL lifetime,
respectively.

Figure 4. Nyquist spectra of (A) BTYA-VA, -TCA,-TFCA, -PFCA,
PL lifetimes of BTYA-TCA, BTYA-TFCA, and BTYA-MOCAand -MOCA and (B) DPPA-VA, -TCA, -TFCA, -PFCA, and
MAPbBg PQD Ims compared to the PL lifetimes of BTYA- -MOCA MAPbBg PQD Im on FTO substrate under one sun
VA and BTYA-PFCA MAPRBPQD Ims, which contain illumination (100 mwi/cn?). Inset displays equivalent circuit.
insulating and not energetically aligned ligands, respectively. In
contrast, signtantly longer fast decay component lifetimes aréhe Nyquist spectra of PQIms passivated with BTYA and
observed in DPPA-TCA, DPPA-TFCA, DPPA-MOCADPPA with each acid, respectivé@lgble 2 provides a
MAPDbBg PQD Ims, at 6.5 0.1, 5.8 0.1, and 6.3 0.1 summary of the series resistaite gnd charge transport
ns, respectively, compared to DPPA-VA and DPPA-PFQAsistanceR:t), determined by the'st and second intercepts
MAPbBg PQD Im at 0.77+ 0.04 and 3.0% 0.14 ns, on the real axis, respectively, as well as the lifetime of charge
respectively. This opposite trend from passivating with BTYifansfer calculated using the constant-phase element (CPE)
compared to DPPA may be due to DBPA stacking andR-1.*’ The Ims containing DPPA passivated PQDs have
interaction, which could restrict the molecular motion of theonsistenR; near 0.195 ohm, while BTYA passivated PQD
EDLs to a greater extent than BTYA. By restricting thelms have much largB ranging from 30.1 to 78.8 ohm.
molecular motion of the EDLs, a dampening of nonradiatiidowever, theR.; and  for BTYA-VA and DPPA-VA
pathways slow the rate of nonradiative recombination resultiMAPbBg PQD Ims is similar. Therefore, DPPA ligand by
in longer PL lifetime. itself may not have sigrant conductivity advantages. The
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Table 2. Series Resistand®)( Charge Transport measurements. As observed in TRPL measurements, BTYA

ResistanceR:y), and Charge Transfer Lifetime ) of and DPPA capped PQDs have the opposite trend in EIS

Each MAPbBy PQD Film on FTO Substrate measurements. For DPPA-passivated PQDs, EDL-capped
MAPbBg PQD R. (ohm) Rer (ohm) i (ms) PQDs have the lowe’t; and fastest,. The fastest,, is
BTYAVA 201 675 3.20 measured to be 0.12 ms for DPPA-TFCA MAHRBD Im.
BTYA-TCA 33.0 341 16.1 Our previous work using benzylamine (BZA) and benzoic acid
BTYATECA 8.8 328 165 (BA) delocalizing ligands have,gof 0.63 m$? which is
BTYA-PFCA 30.1 80.8 3.83 more than ve times the lifetime of DPPA-TFCA MARbBr
BTYA-MOCA 30.1 645 30.5 PQD Im. Therefore, energy level alignment, as well as surface
DPPA-VA 0.195 60.5 2.97 stabilization between the EDL and the PQD core, is crucial for
DPPA-TCA 0.195 21.9 1.04 increasing surface charge carrier density and charge transport
DPPA-TFCA 0.195 2.67 0.12 in PQD solid Im.
DPPA-PFCA 0.195 40.2 1.90

To examine the photogenerated current density, the
transient photocurrent responset (curve) was measured

conjugated acids that are more energetically aligned with tor each PQD solidm. Details of the measurements as in
PQIJD gore' TCA TECA. and MOCA arge obse)llvedgto have theg shown irFigure S4the photogenerated current density
highesiRC,and :slowesfr for BTYA-passivated PQDns measurements are consistent with the TRPL and EIS
T el : : ; ;

This appears counterintuitive as the energetically aligndgasurements. PQDs passivated with BTYA and the most
ligands should have strong PQD-ligand electronic couplifgiergetically aligned ligands TCA, TECA, and MOCA produce
that increases surface charge carrier density. However, beckifisephotocurrent density than the VA and PFCA ligand, while
of the instability and lack of stacking intermolecular the opposite is observed for DPPA passivated PQDs.
interaction, the strong PQD-ligand coupling may enhanceherefore, when the average ligand binding geometry
trapping of charge carriers and is consistent with the TRHhcilitates charge trapping, the EDL diminishes photocurrent

DPPA-MOCA 0.195 7.18 0.34

Figure 5. AFM topography images of (A) DPPA-VA, (B) DPPA-TCA, (C) DPPA-TFCA, (D) DPPA-PFCA, and (E) DPPA-MOCA MAPbBr
PQD Ims on FTO substrate. The area in the red square is whiene were measured for TPC and TPV. (F) TPC decay curves of DPPA-
VA (e, red), -TCA (b, blue), -TFCA (a, green), -PFCA (d, orange), and -MOCA (c, magenta) MAPbBr3IRGQDO(G) TPV decay curves of
DPPA-VA (b, red), -TCA (e, blue), -TFCA (c, green), -PFCA (a, orange), and -MOCA (d, magenta) MAPRQBr Ims.
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density even further than using an insulating capping ligantCA ligand exchange with OA. Furthermore, TPC and TPV
such as VA. measurements caom faster charge transport times and longer
To gain further insight into theext of passivating PQDs charge carrier lifetimes, respectively, for PQDs passivated with
with DPPA and EDLs, local transient photocurrent (TPC) and&EDLs. In addition, DPPA-TCA MAPHBYQD-based LEDs
transient photovoltage (TPV) decay measurements weege observed to have better performance than DPPA-VA
conducted using conductive atomic force microscopMAPbBg PQD-based LEDs with a low turn-on voltage of 2.5
(AFM). Details of the TPC and TPV measurements aré/. This work has demonstrated that energetically aligned
supplied inSI. Shown inFigure @ e are AFM topography conjugated capping ligands coupled with a spatial orbital
images of each PQDIm that contain a red square overlap facilitator can sigrantly increase surface charge
representing an area 100.00 nm, where TPC and TPV  carrier density for improving optical and electrical properties of
measurements were performed with similar P@D PQD Ims for potential optoelectronic device applications.
thickness on FTO substrate. Displaye#ignre 5 is the
TPC decay curves, and the inset shows the charge transport ASSOCIATED CONTENT
times of each PQOm. This measurement is directly related*  gypporting Information

to the conductivity and charge mobility of the PQD dolsl ~ The Supporting Information is available free of charge at

As shown, the PQDs passivated with energetically aligngfls://pubs.acs.org/doi/10.1021/acsenergylett.0c00093
ligands are observed to have up to 3-fold faster charge

transport time than PQDs capped with insulating or not  EXperimental section and supplementames PDF)
energetically aligned ligands. Our previous study of BZA-BA

MAPbBg PQD I2n31 was measured to have a charge transport AUTHOR INFORMATION

time of 1.52 s° Thus, our new PQDIms with dual Corresponding Author

passivation using energetically .alig.ned ar_ld stacking Jin Z. Zhang Department of Chemistry and Biochemistry,
ligands, outperform PQDIm with insulating or not University of California, Santa Cruz, California 95064, United

energetically aligned ligandas well as our previously v : ! ) ) .
measured BZA-BA MAPRBIQD. Im. l?(tgtce.Z,dl?rmd.org/OOOO 0003-3437-91RiKail:zhang@

TPV decays were collected to determine the charge carrier
recombination lifetime of PQDs passivated with DPPA anguthors
each acid. Longer lifetimes represent a slower rate of excitorEvan T. Vickers Department of Chemistry and Biochemistry,
recombination and, hence, a greater probability of char@iversity of California, Santa Cruz, California 95064, United
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